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The diffusion to the surface is considered for a flat plate and a cylindrical wire in a pulsating flow of
viscous incompressible liquid; the square of the modulus has been determined for the frequency response
of an electrical diffusion transducer, which relates the spectral density of the velocity fluctuations (or else
the friction fluctuations at the wall) to the spectral density of the mass fluctuations at the transducer.

One can examine the motion of a liquid via the heat transport rate, as in thermal anemometry, and
also via the material transport rate.

A simple method of measuring the mass transport rate by reference to a monitor is to measure the
limiting diffusion time of an electrochemical reaction; see [1, 2] for the details of the cell and the principle
of the method of measuring mean flow characteristics. One can measure the frictional force of a flowing
liquid at the wall of the channel by this method also [3, 4]. One determines the rate of redox reaction at the
electrode, which fits flat with the surface, and to which an appropriate voltage is applied (Fig. 1). To re-
duce the ion concentration rate, and to eliminate migration current transport, one adds to the solution an
excess of a second electrolyte whose ions do not participate in the reaction. If the voltage is high enough,
the velocity determines the rate of diffusion transport of the monitored ions to the electrode surface. The
diffusion current is related by the diffusion equation to the velocity and velocity fluctuations in the flowing
electrolyte. The diffusion coefficient for the monitor ions is small, so a short electrode means that the
thickness of the diffusion layer will be much legs than the linear part in the velocity distribution for a lam-
inar flow, or else it will be less than the viscous sublayer in a turbulent boundary layer. This feature con-
siderably facilitates solution of the problems and allows one to use electrical diffusion to examine in detail
the fluctuating flows directly near the wall.

Here we derive the frequency characteristics of a planar transducer used to measure the tangential
stress at the wall, and also the same for the pulsating flow around a cylindrical transducer for the velocity.
The frequency response of the linear system (a process at the monitor electrode is described by a linear
equation) is determined as the response of the system to a harmonic system A(w) exp (fwt), i.e.,

H(w) = B(w)/A(w)

Here H(w) is the frequency response and B{w) is the amplitude of the signal at the output. In this case,
the input signal is the pulsation amplitude of the velocity or friction at the wall, while the output signal is
the mass flow rate pulsation.

1. Frequency Response of a Planar Transducer

for Tangential Stress Pulsation Measurement

To determine the frequency response one needs to solve the transient-state diffusion equation for a
boundary diffusion layer at the electrode:
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subject to the boundary conditions
(2,0, =0,c(0,9 8 =cz 0o, 8=t (1.2)

Here x and y are longitudinal and transverse coordinates, t is time, ¢ is concentration of the reacting
ions, u is electrolyte velocity, D is diffusion coefficient, and ¢, = const. The speed in the diffusion layer
is represented in the form of a sum:

U =uy + u_ 1.3)

where u; is the steady component of the velocity and u_ is the pulsating component of the velocity. We use
the fact that the diffusion boundary layer is thin (Fig. 2), and employ the expression of [5] for the steady
component of the velocity:
Uy = -l 1.4)
Here 7 is the tangential stress at the wall and ; is the dynamic viscosity; the pulsating component of
the velocity is put as a simple harmonic:

u_ = eugexp (imd) 1.5)
where w is the pulsation frequency and € = const «<1. We introduce the dimensionless variables x*, y*, t*,
u*, c*, w* via
z* = z/L, y* = y (vpLD)%, t* = ¢ (v*D/u2L?)Y:
u* = u (W2 LD)Ys, * = ¢/Ce, o* = o (L*u?*/v*D)
where L is the length of the monitor electrode; (1.1) and (1.2) take the following forms in these dimension-
less variables:

Jc* de* . O2c*® (1 -6)

o T eE = e
c* (2%, 0, t*) = 0, ¢* (0, y*, t*) = c* (2%, 00, %) =1 @x.7)
We seek the solution to (1.6)-(1.7) in the form of the sum
c* = co* - exp (iw¥t*) c_* @.8)
where cg* is the steady-state component of the concentration, and ¢ * is the complex amplitude of the con-
centration fluctuation. If the velocity pulsations are small, the concentration pulsations will be small also,
and then one can linearize (1.6) to determine the concentration distribution via the following two approaches.

For the component cg* we have the problem

& 0c0® 2o 1.9)

9F T e
co* (@*, 0) =0, c* (0, y*) = ¢* (%, o0) =1
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which may be solved after introducing the new independent variable n = y*x*'i/?,, which gives
B : oo
ot = exp (— n3/9)dn/S exp (— n® /9) dy (1.10)
0 0

The steady-state mass flow rate per unit surface area of the transducer is

L
D ac
= 2\ (22 = s
1= (52 ), _ e = 0.806 De (v /uLD) 1.11)

The concentration pulsation amplitude is found from

. L 0c_¥ deg* % * (1.12)
m¥c_¥ -+ = eyt = — »
fote_ v T dy*2

subject to the uniform boundary conditions
¢ *(x*, 0) = c_*(z*, oc) = c_*(0, y*) =0 (1.13)

The problem of (1.12) and (1.13) may be solved in sequence for small, large, and moderate pulsation
frequencies.

Case of Low Pulsation Frequencies (w* «1). We represent c* in the form of a series with respect
to frequency:

et = D) (io¥) et 1.14)

n=0
We substitute (1.14) into (1.13) and equate equal powers of the frequency to get for ¢y a system of
recurrence equations

9 _ & 1.
eyt aczo* ¥ azo-z @.15)

dc P *

en* + * a;:l— = ayf;;l— (1.16)
wheren =0,1, 2,
The solution to the first equation is the simple one
eyt = —%—sy* 3;;: 1.17)

This solution shows that the gquasistationary part of the complex amplitude co* undergoes no phase
shift relative to the superimposed signal, while the amplitude of clris less by £/3 than the mean mass flow
rate. In (1.16) we make the substitution

Cu ¥ = ex*:/3 ¢, * (1) (1.18)

which gives us a system of ordinary equations

d261 * dc; an
= “*‘1/3714 o 2, =0
dn? + rry
_ e, * (1.19)
d"]z 1/.; 1% — — 2, cn+* = Cniyy
wheren = 2, 3, ... . The initial conditions for the system of (1.15) are derived from (1.13):
n* (0) = €0 () = 0 .20
Heren=1,2,3, .... The problem of (1.19) and (1.20) has been solved by computer by a finite-dif-

ference method for n < 4; we have determined the values of the derivatives cp+*' at the point n=0 (c;+*'(0) =
0.0990, ¢, *'(0) = 0.0354, c;, *'(0) = ~0.0097), which are needed in order to calculate the pulsating mass
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TABLE 1. Square of the Modulus of the Frequency Char-
acteristic for a Planar Transducer

|-
o * |H 2 @ * IH$|2 o * IH*’z ‘ @ * ] IH*,;
0 0.1142 5 0.0395 10 0.0122 15 0,0046
1 0.1035 | 6 0.0305 | 11 0.0098 16 0.0038
2 0.0852 7 0.0249 12 0.0085 17 0.0031
3 | 00874 | 8 0.0193 | 13 0.0071 18 0.0029
4 0.0520 9 0.0161 14 | 0.0052 19 0.0025
w2 flow rate to terms of order 0(w*%). The pulsating mass flow
w1 '/”, rate per unit surface area of the transducer is given by
p{ o 1 1
c_ . [ LT T S )
.=+ (55) 8z = (550806 — - 0¥, * (0) +
(1]
+ i (3, 0¥, ¥ (0) — 35 ey F (O)))e exp (10¥t*) Dey (v /pLD)Y: (1.21)
We determine the dimensionless frequency response of
the transducer as a ratio of the dimensionless pulsating mass
flow rate g * = q_/q to the dimensionless tangential stress pul-
sation 7_* = 7_/7:
Fig. 3 H* = q %/t % = 1/, — 00213 0*2 -+ i (— 0,092 0* 1 0.044 0*%) (1.22)

The dimensional expression. for the frequency response is found from

H= H* qy/% 1.23)

A standard theorem [6] relates the spectral densities at the input and output of a linear system to the
square of the modulus of the frequency characteristic:

Sy (&) [H (0) ] = Sy () (1.24)

Here 8 is the spectral density at the input, while Sy is that at the output; in the present case, the in-
put signal is the friction pulsation, while the output signal is the mass flow rate pulsation. The modulus of
the frequency response gives the sensitivity of the transducer as a function of frequency and is an important
characteristic of an electrical diffusion transducer. For low frequencies we have

[ H* 2= (1; — 0.0213 9*2)2 1 (— 0.092 o* 4- 0.044 0*3%)2 (1.25)

Case of High Frequencies (w*>1). In (1.12) we can omit the term y*5c*/9x*; we use for cy* a
linear approximation within the diffusion boundary layer:

et = y* (%) o ‘ (1.26)

which gives for c¢_* the following equation in place of (1.12):

a [oco® 8%c_*
jo¥e_ ¥ 4 ey az*<ay* >u T 1.27) .

The solution to this equation that satisfies the boundary conditions of (1.13) takes the form

e 0 (da* iy*? 3 [ deo 2 . .
et = Eo < Ay* >y —0 < =+ m*z) +e Y <‘a'y—$>y 0 ©F —exp(— VL(D ) (1.28)

The frequency characteristic is given by the following expression up to terms of O(w™™:

8.68

H* = () 1.29)
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The square of the modulus is

| H* |2 = 37/0* 1.30)

Intermediate Frequencies [w* = O@1)]. To determine the
square of the modulus of the frequency response, we solved (1.12)
subject to (1.13) by computer fitting; the numerical values are given
in Table 1. A suitable approximation for |H*?| is given by the fol-
Fig. 4 lowing formula, which coincides satisfactorily (Fig. 3) in the high-
and low-frequency regions:

[H*[2 = (9 4+ 0.54 0*2)2 -+ (0.27 0*¥)2) (1.31)
From this |H*|? and the observed S, one can get S; by employing (1.24).

We see from (1.31) that the sensitivity of such a transducer decreases exponentially as the frequency
rises, but the passband can be increased by reducing the size of the electrode, as follows from the form of
the dimensionless frequency.

2. Frequency Response of a Cylindrical Transducer

for Velocity Pulsations

Consider the diffusion to a thin unbounded cylinder in a pulsating flow (Fig. 4); the velocity at in-
finity is normal to the generator of the cylinder and takes the form '

u,, = uy (1 + e exp (iot)) 2.1)
where u, is the steady-state component of the velocity; it has been shown [7] that the current function in

this case is given by

P = uT"(Z —;2-— In —;~ — —%— + (7’—{-)—1\ sin O (fy -+ ef, exp (iwd)) (2.2)

’

where r and ¢ are polar coordinates with the axis ¢ = 7 in the direction of the free flow, and R is the radius
of the cylinder;

2Re 2Re %2 —1

a2=1+i%’2—, Re:B?—<1, Re is Reynolds number

f.,:(ln 7'938)", fl=<m & >“, £ = 8exp (—0.5772) a3, 8 = =

We assume [5] that the velocity distribution is linear in the region of the diffusion boundary layer.
We expand the current function near r/R = 1 and retain only the first term in the series to get

P = Foy?sinz (2.3)

(Fa = uo (fo + &1 exp (iwt)),
y=r/R—1, z=0)

We get the longitudinal and normal components of the velocity from (2.3):

u=%=2Foysinx, v=——%—£—=—~Foyzcosx @2.4)
The equation for diffusion in the boundary-layer approximation is as follows, together with the bound-

ary conditions in x, y coordinates:

de Fy . e 2 e\ - D e .
—5t—+T<2ysmx5;——y c037ﬁ>_—7§2—ay,z (2.5)
ez, oc, t) = ooy (0, Y, ) =c(2,0,8) =0 (2.6)
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TABLE 2. Square of the Modulus of the Frequency Char-
acteristic for a Cylindrical Transducer

@ EH | o {H 2 @ |H #e o* B *{2

0 0.235 1.2 0.146 2.4 0.057 3.6 0.023
0.2 0.231 1.4 0.126 2.6 0.049 3.8 0.020
0.4 0.221 1.6 1 0.109 2.8 0.042 4 0.017
0.6 0.206 1.8 0.093 3 0.036 3 0.009
0.8 0.187 2 0.079 3.2 0.031 6 0.006

1 0.167 2.2 0.067 3.4 0.026 8 0.002

We seek the solution to (2.5)-(2.6) in the form

v Pr'/s Re'l

f1 .
c=1cy+ & -exp (fo¥t)c_ (m* =0 TR

, Pr=le) @2.7)
Pr is the Prandtl diffusion number. We substitute (2.7) into (2.5) and introduce the new variable

W=y V257 (3P R foilfmyh

0

to get for c; the equations

3 8
ST =0 @=0, c(o)=cs (2.8)
The solution is given by
T o0
Co= Ceo Sexp (—z%/3)dx / g exp (— z%/ 3) dx (2.9)
8 o

The steady-state mass flow rate per unit surface area at the transducer is

a

Dep /5 .
Qo =—= S(%)y___o dz = 1.158 Dco, (Pr Re o) 2.10)

For c. we get by substitution into (2.5) of the new variable yy = y(PrRefo)ys and from (2.7) that

im*c_—i—Zylsinz%i;—yﬁcosx(%f—i—%-f—}:% 7 (2.11)
The boundary conditions for this equation are
c- (z, ) = c.(m, y;) = c- (z,0) = 0 (2.12)

We find the solution to (2.11) and (2.12} for the case of small, large, and moderate pulsation frequencies.

Case of Small Pulsation Frequencies (w* «1). We seek the solution in the form of the series

M

c_= Dy (in%)" ¢p- (2.13)

T

1
<

For ¢y we get from (2.11) an equation whose solution takes the simple form
Co_ =134, 000y, (2.14)

We substitute into (2.11) a new variable

X
Yo=Yy V2sinz, z,= Q V 2sinydy
0



and the series of (2.13) to get a system of recurrence equations

|10
2 sin z, <y2 az ajj >c,l_ Cpte (2.15)
/
jry -
l wheren=1,2,3,.... The Green's function for the differential
) operafor
v
¢ —y
] P=Yagn~ Gym
|
7 —_— 4 has been defined [8] and takes the form
f 2 P § o* .
; : _ () Y2ty ( 2 (yay)”” )
Fig- 5 G\‘Z% Yaor T y) =73 eXp(— 9 (22 — 7) ) l‘/a 9z — ) } (2 16)

Here I% is a Bessel function. We solve (2.15) via (2.16) to get

_i
0

We define the dimensionless frequency response as the ratio of the dimensionless mass flow rate
pulsation g * = f;q_/qofy to the dimensionless velocity pulsation u_* =u_/u

2

Gsinze, ;_dzdy 2.17)

Sty

H*=1.82¢ */u_* (2.18)

The square of the modulus of the frequency response is given to terms of O(w™?) by

a ¢ 7o
Co— d g / 02—>

T\ | =— dz, —
(0y> )yz—o : (3!!2 ya=0 2

[§(E),_ anf} =03t — 1st0m 0oy
(20 =

The Mir-l computer was used to calculate the integrals in (2.19).

Xo

{H]P = [’<" <%>yg=0 dxz]z + (0*2.[2
0

Sar 2R

L)

]/2 sinz dz = 3. 38)

Case of High Frequencies (w*>»1). In (2.11) we retain the second derivatives and a term containing
the large parameter w*; for c_we get

2¢o %

iw¥c_ 4+ o = (2.20)

whose solution that satisfies (2.12) takes the form

£ ¥
1 Y ¢ 9% .
== Vi {0 e y)dy-—exp( Vie*y )}W_" xp(V io*
g 2.
oy C oy
+exp(Vio*y) \ G exp (— ) 0% y) dy!| 2.21)
The square of the modulus of the frequency characteristic is
|[H*? = 0.905/0%° + O (0*-45) (2.22)

Case of Moderate Frequencies (w* = 0(1)). In this case the problem of (2.11) and (2.12) was solved
by means of BESM-6 computer; Table 2 gives the results, which fit well with the values obtained for low
and high-frequency approximations (Fig. 5). The values of |H*|? may be approximated by
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[ = 0.235 /(1 4 0.312 0% -+ 0.103 0*%) (2.23)

The dimensional expression for the square of the modulus of the transfer function is obtained from
[H[? = [H*[ g ug? (2.24)

The spectral density known from experiment for the mass fluctuations S;(w) may be used with the
square of the modulus for the frequency response to determine S;{w) from

Sy (0) = Sy (0) /| H (@) 2 (2.25)

The result of (2.24) shows that the sensitivity of the cylinder method falls as the frequency rises at
the same rate as does that of a planar transducer; the form of the dimensionless frequency shows that the
frequency passband can be increased by reducing the diameter of the wire.
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